Module 1: Introduction to Data Science & Analytics
What is Data Science & Data Analytics?
Understanding the Data Ecosystem
Career Scope & Industry Applications
Overview of Data Science Tools & Technologies
Setting up Jupyter Notebook and GitHub
Python Basics: Variables, Loops, Functions, and Lists
Working with Libraries – NumPy, Pandas
Data Structures & Operations
File Handling and Data Import/Export
Hands-on Practice: Python Data Projects
Data Wrangling Techniques
Handling Missing Values & Outliers
Data Transformation & Normalization
Exploratory Data Analysis (EDA)
Real-World Data Cleaning Project
Data Visualization with Matplotlib & Seaborn
Dashboard Creation in Power BI & Tableau
Visual Storytelling with Data
Business Insights from Data Visualization
Mini Project: Sales Dashboard & KPI Analysis